Chemistry Directory and Faculty profiles
Click the following link to be directed to the Chemistry Department Directory for full profiles of all Chemistry faculty and professional staff or scroll this page to view a snapshot of each Chemistry Professor and their research interests.
Faculty Research Descriptions
Marcus Thomsen
Professor Marcus Thomsen
Organic Chemistry
Nucleophilic and electrophilic substitution reactions in ionic liquids. Photo-acid catalyzed organic reactions.
View Dr. Thomsen's full profile
Rick Moog
Professor Rick Moog
Physical Chemistry
Ken Hess
Professor Ken Hess
Analytical Chemistry
Elucidating the fundamental processes of glow discharge plasmas that lead to their analytical utility and expanding their applications in trace element analysis in diverse fields ranging from environmental monitoring to materials science.
Scott Van Arman
Professor Scott Van Arman
Bioorganic Chemistry
We are interested in the design, synthesis, and study of molecular devices that incorporate the elements of molecular recognition and host/guest chemistry. One category of such devices that we have focused on for the past few years is conformationally flexible host molecules that can be organized by an analyte to subsequently bind solvatochromic fluorescent indicators.
This cooperative association can be used to signal the analyte binding event. Our novel design for fluorescent chemosensing may be applicable to the detection of low concentrations of so-called quenching heavy metal or transition metal ions in aqueous solution.
View Dr. Van Arman's full profile
Jennifer Morford
Professor Jennifer Morford
Environmental/Analytical Chemistry
My research focuses on better understanding trace metal cycling in the marine environment. Since metals do not degrade, metal accumulation can be used to understand changes in the amount of metals being added to the marine environment and/or changes in conditions that affect metal accumulation over time. To improve our understanding of metal cycling, we study sediments obtained from marine waters. Because of the complexity of environmental samples, my research group also studies single mineral phases in conjunction with simple organic molecules in the laboratory to discern individual controls on metal adsorption that might be occurring in the environment. Both approaches provide us with information regarding metal sequestration in sediments under various conditions.
View Dr. Morford's full profile
Ed Fenlon
Professor Ed Fenlon
Organic Chemistry
We use organic synthesis to build molecules for practical purposes. Research projects involve:
1. The synthesis of nucleotides and proteins with an azide (R-N3) probe to monitor electrostatic environments and solvent dynamics by vibrational (IR) spectroscopy.
2. The design and synthesis of air-stable, water-soluble organic radicals such as sulfonated BDTPP for dynamic nuclear polarization imaging.
3. Molecular knots.
4. The design and synthesis of musks as perfumes.
5. Collaborative work to synthesize ganglioside GM3 to help Amish children.
6. The history of organic chemistry.
View Dr. Fenlon's full profile
Scott Brewer
Professor Scott Brewer
Department Chair
Physical Chemistry
My research focuses on the study of protein and nucleic acid structure with site-specificity utilizing a variety of spectroscopic methods including NMR and FTIR spectroscopy coupled with isotopic and/or chemical labels.
View Dr. Brewer's full Profile
Kate Plass
Professor Kate Plass
Inorganic Chemistry
I am interested in the relationships between surface and solid-state properties of materials and their technologically important behavior. The size and composition of semiconductor particles affects how they absorb light and conduct electrical charge, and we use this to design particles effective in solar energy conversion devices. We also explore how the self-assembly of organic molecules into ordered monolayers at the liquid/solid interface influences solution and surface phenomena.
View the Plass Research Group website
Christine Phillips-Piro
Associate Professor Christine Phillips-Piro
Biochemistry
Work in my lab will utilize a variety of biochemical techniques and will focus on understanding protein function through structure using X-ray crystallography. An overarching theme of the projects I am interested in is how cells sense and respond to their environment. One project uses in vitro techniques to study how the pathogenic bacteria Vibrio cholerae utilizes exogenous heme as an iron source for the cell while preventing the toxic side effects that heme could cause. Another project begins to investigate the protein interactions involved in a new nitric oxide (NO) signaling pathway in eukaryotes involving S-nitrosothiols. The third project aims to study the mechanism by which a bacterium involved in bioremediation of the environment, Dehalococcoides ethenogenes, senses and degrades the pollutant tetrachloroethene which is produced by dry cleaners and chemical industries.
Gabe Brandt
Associate Professor Gabe Brandt
Biochemistry
Professor Brandt is a chemist who rejoices particularly in the splendor of biological molecules. His graduate work involved incorporating unnatural amino acids into human ion channels expressed in the eggs of carnivorous frogs. After post-doctoral research on the X-ray crystallography of various proteins, he currently has a two-fold focus. One project in his lab addresses the biochemistry of proteins involved in the virulence mechanism of the malaria parasite Plasmodium falciparum. The other seeks to synthesize photosensitive molecules with the goal of controlling, via a pulse of light, specific biochemical pathways inside living cells.
View Dr. Brandt's full profile
Sarah Tasker
Assistant Professor Sarah Tasker
Organic Chemistry
Work in my lab involves the interface of synthetic organic chemistry and medicinal chemistry. I am driven to discover and develop new reactions that will not only enable or shorten synthesis of small heterocyclic compounds, but also have a broader impact on the study of biological systems and in drug discovery.
For more information, check out the Tasker Lab website.
View Dr. Tasker's full profile
Davide Lionetti
Assistant Professor Davide Lionetti
Inorganic Chemistry
Research in my lab will employ the tools of inorganic chemistry to tackle issues in energy science and catalysis. I am interested in developing molecular metal catalysts for energy conversion processes, such as the storage of renewable energy in chemical bonds and the subsequent utilization of these fuels, to promote the transition to sustainable energy sources and chemical processes. Our research will leverage synthesis, spectroscopy, and electrochemistry to elucidate the mechanism of small-molecule conversions enabled by transition metal complexes and drive the rational design of catalysts in contexts applicable to next-generation technologies.
Claude Yoder
Claude Yoder, Charles A. Dana Professor of Chemistry, Emeritus
Inorganic Chemistry
The seemingly simple inorganic component of bone and teeth--hydroxylapatite, Ca5(PO4)3OH--has occupied our attention for the last decade. We are intrigued by the fact that a great variety of ions can replace, in part, those of apatite, which leads to applications such as remediation of heavy metals, ion-exchange, nuclear waste encapsulation, phosphors, and so on. We have prepared apatites containing different divalent cations of elements such as Sr, Ba, Pb, and Cd and have explored the structure of these using solid state NMR and infrared spectroscopy, as well as X-ray diffraction. Our most recent focus has been on the substitution of the carbonate ion for phosphate or hydroxide and the presence of water in the structural channels that are important to the flexibility of the these compounds. Currently we are attempting to identify the location of the carbonate ion in the structure of various apatite types, with the hope of understanding how composition and structure may affect its location.
Chemistry Faculty Research Collaborations
Collaborative research has a long history in F&M's Chemistry Department beginning with Claude Yoder whose collaboration with Charles Schaeffer, Jr. at Elizabethtown College spans 40+ years.
Select from the following list to view information on current faculty collaborations: